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Based on Peskun’s theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should
have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will
compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the
Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics.
As an application in quantum physics we consider the spin 3/2XY model and the Bose-Hubbard model which
have been simulated by the directed loop algorithm in the stochastic series expansion framework.
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Monte Carlo methods are nowadays used in almost every
branch of science, offering exact results in a statistical sense
or providing answers where other methods fail. Already in
statistical physics alone, Monte Carlo methods have been
applied to a variety of models[1]. For many applications,
good algorithms have been devised and there exist now so-
lutions to many problems that were initially untractable. A
well known example is the critical slowing down in the
neighborhood of critical points that has been overcome in
both classical(by cluster algorithms[2,3]) and quantum
Monte Carlo(by the loop algorithms[4]). The need for better
performing algorithms is clear: efficient algorithms lead to
more accurate results at the same computational cost. Yet
little that goes beyond common sense reasoning is known
about why an algorithm is efficient or not, and within a cho-
sen algorithm there is often additional freedom.

We address the question of the efficiency of Markov chain
Monte Carlo(MCMC) algorithms in terms of smaller error
bars. We first touch upon the needed terminology as it is
usually[5] understood in statistical physics from a practitio-
ner’s viewpoint. We show how optimal sampling enters into
this discussion and comment on its implementation. Finally,
we compare it with standard updating mechanisms for the
Potts model and for the directed loop algorithm[6,7] in the
stochastic series expansion[8].

In MCMC a transition kernel(matrix) T is set up and we
will assume that we know the discrete weightsW1,… ,Wn
(finite, computable set) of the invariant probability distribu-
tion W. If the following two conditions hold:

(i) normalization of probability,o jTij =1, ∀i;
(ii ) reversibility (detailed balance), WiTij =WjTji ,

and the chain can connect any two states in a certain finite
number of steps, then the Markov chain will converge to the
invariant probability distribution(which will be W). The sto-
chastic matrixT has as largest eigenvalue 1, while the other
eigenvalues are sorted by −1,l j ,1, j =2,…n. Strictly
speaking, condition(ii ) is a too strong[9,10] condition to
assure convergence of the Markov chain towards the invari-
ant distributionW, it sufficesoiWiTij ,Wj, but the reversibil-
ity condition is widely used in practical applications.

The Markov process correlates the measurements of the
observablesQ in consecutive steps. The variancesQ

2 on these
correlated measurements is not equal to the variances0,Q

2

obtained from uncorrelated measurements. Instead,sQ
2

=2tint,Qs0,Q
2 , in which we have introduced the integrated au-

tocorrelation time[5,11]

tint,Q =
1

2
+ o

t=1

`

AQsxstdd. s1d

Stationary samplesxstd at the Monte Carlo timest are ob-
tained from the sampler while the normalized autocorrelation
function AQsxstdd for the observableQ is given by

AQsxstdd =
kQsxsi+tddQsxsiddl − kQsxsiddl2

kQ2sxsiddl − kQsxsiddl2 , s2d

in which the ensemble averagek¯l is taken overi. We can
now make a connection with the second largest eigenvalue
by

sup
Q

tintQ
=

1 + l2

2s1 − l2d
. s3d

The following discussion focuses on the eigenvaluesl2, l3,
… to obtain a lower asymptotic variance for an observable
Q,

vsQ,Td = lim
n→`

1

n
varFo

k=1

n

QsxskddG . s4d

A different question concerns the convergence[12] of a
probability distribution towards the invariant probability dis-
tribution. It is dominated by the second largest eigenvalue in
absolute value of the stochastic matrix, which can be differ-
ent froml2 for nonpositive operators, and would determine
the required number of thermalization or burn-in steps. Note
that nonreversible transition kernels can converge faster[13].

The stochastic matrix has the dimension of the Hilbert
space, and all algorithms consist of two different operations
in every Monte Carlo step: a limitation on the configurations
that can be reached and secondly the acceptance or the re-
jection of the transition to one of them. For instance, heat-
bath updating(also called the Gibbs sampler[14]) in the*Electronic address: Lode.Pollet@UGent.be
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Ising model with dimensionL3L can in one step reach only
L2+1 different configurations from the current configuration
which has weightW1. Among theL2 new ones, it picks one
at random and the transition to this trial configuration with
weight W2 will be accepted according toW2/ sW1+W2d, oth-
erwise it remains in the current configuration. Note that all
eigenvalues of the Gibbs sampler are positive[15].

We will now focus on this second step of the update. For
the Ising model, there are only two different configurations
that play a role. How should we choose the transition matrix
so that the asymptotic variance is smallest? A hint is given by
the Peskun theorem[16], stating that ifTA andTB both sat-
isfy conditions(i) and(ii ) and if all off-diagonal elements of
TB are larger or equal than the corresponding elements ofTA,
then TB will lead to a smaller asymptotic variance for all
observables thanTA, or equivalently,l2

A.l2
B. It then follows

that the Metropolis-Hastings algorithm[17] is by construc-
tion the most effective sampler for the Ising model with ran-
dom single site updates(and not the Gibbs sampler). For all
possible stochastic matrices with dimensionn=2 the Me-
tropolis transition matrix[18] is given by

Tij
Met = 3 0 1

W1

W2
1 −

W1

W2
4 . s5d

Here we have ordered the weights in ascending order. This
nonstandard way of writing Metropolis updating shows how-
ever the key ingredients of its efficiency, namely that the
chance of staying in the current configuration should be
minimized and secondly that the second largest eigenvalue is
l2=−T21

Met=−W1/W2 .
Peskun’s theorem implies an ordering of the weights. So

let (for the remaining of the paper) p1øp2ø¯øpn be the
normalized weights in ascending order,pi =Wi /o jWj. Pes-
kun’s theorem tells us that we can always improve a transi-
tion matrix T by “Metropolizing” it, Tij8 =Tij /o jÞiTij , ∀ j Þ i.
Applying this idea to heat-bath updates, the following
Metropolized Gibbs sampler(MG) is obtained:

Tij
MG = 3

0
p2

1 − p1

p3

1 − p1
…

pn

1 − p1

p1

1 − p1
1 − …

p3

1 − p2
…

pn

1 − p2

p1

1 − p1

p2

1 − p2
1 − … …

pn

1 − p3

] ] ] � ]

p1

1 − p1

p2

1 − p2

p3

1 − p3
… 1 − …

4 , s6d

or Tij
MG=min(p j / s1−pid ,sp j /1−p jd). Liu [19] has applied

this idea to the independence Gibbs sampler, and obtained a
complete eigenanalysis for the resulting stochastic matrix.

It is possible to repeat this Metropolizing procedure until
all but one of the diagonal elements are zero. So, optimal
transition matrices must haveTii =0, i Þn. Indeed, Frigessiet
al. [20] have shown that the optimal transition matrix is of
the form

Tij
Opt = 3

0
W2

W1
y1

W3

W1
y1 …

Wn

W1
y1

y1 0
W3

W2
y2 …

Wn

W2
y2

y1 y2 0 …
Wn

W3
y3

] ] ] � ]

y1 y2 y3 … 1 − y1 − y2 − …

4 , s7d

with y1=p1/ s1−p1d, y2=s1−y1dp2/ s1−p1−p2d ,… . The
eigenvalues are given by 1,l2=−y1 [the same as in Eq.(6)],
l3=−y2,… . They are all negative and appear in an ordered
way. This l2 has the lowest value that possibly can be ob-
tained with respect to the probability distributionW, and
with l2 determined,l3 is then the smallest possible third
largest eigenvalue, etc. Note that a rescaling is at work here,
the entries for the second rowT2j, j =2,… ,n are analogous
to the first row apart from the rescaling 1→ s1−y1d. Equation
(7) represents an optimal transition matrix over the entire
Hilbert space, however, many situations of practical interest
need to sample stochastic subprocesses. Within these, opti-
mal sampling can only be achieved when all but one of the
diagonal elements are zero. When Eq.(7) is applied to a
stochastic subprocess, we will call it the locally optimal al-
gorithm.

Potts model. As a first application, we consider theq=4
Potts model[1] in two dimensions. We are interested in the
dynamics of the Monte Carlo process. Therefore we consider
a small lattice with single-spin updates only, and we do not
want to use cluster updates[2,3] here. So we will randomly
select a spin, after which we have to make a choice between
the four possible orientations that this spin can take. Al-
though the random selection of a site and the single spin
update both seriously violate the structure of the optimal
stochastic matrix Eq.(7), the Peskun theorem still holds,
meaning that the matrix Eq.(7) (applied to the stochastic
subprocess) still leads to a more effective sampling than
heat-bath updating,Tij =Wj /okWk=p j, ∀i , j . This of course
cannot cure the fact that the updating of a single spin still
leads to the divergence of the autocorrelation time when the
temperature reaches its critical valuebc.

The decorrelation factor[21] sQ
2 /s0,Q

2 is defined as the
ratio between the error bars obtained from a Monte Carlo
simulation with correlations between successive samples and
the error bars one would obtain from the same number of
independent but identically distributed samples. In the limit
of a large number of samples, the decorrelation factor be-
comes equal to twice the integrated autocorrelation time[Eq.
(1)]. The decorrelation factor can accurately be estimated by
running a large number of independent Markov chains. In
Fig. 1 we see that the decorrelation factor is much smaller for
the locally optimal algorithm than for the heat-bath algo-
rithm.

A small lattice of L=434 has been chosen since the
decorrelation factor scales with system size for single-site
updates such that the difference between the two algorithms
will be larger in absolute terms when using a small lattice.

POLLET et al. PHYSICAL REVIEW E 70, 056705(2004)

056705-2



We clearly see a significant difference between the locally
optimal and the heat-bath transition probabilities. The
Metropolized Gibbs samplerTMG [Eq. (6)] has the samel2
as the optimal one[Eq. (7)], and the integrated autocorrela-
tion times differ only slightly for the 434 Potts model. Note
that it is much easier to implementTMG thanTOpt, and if in
practice the stochastic matrices cannot be computed in ad-
vance and need to be recomputed at each step, it is recom-
mended to useTMG.

Directed loops. The same reasoning also applies to quan-
tum Monte Carlo. In the stochastic series expansion method
[8] a Taylor expansion is applied to the partition functionZ
=Tr exps−bHd, yielding

Z = o
m=0

`
bm

m! o
hi1,…,imj

o
hb1,…,bmj

ki1u − Hb1
ui2lki2u − Hb2

ui3l¯

3kim−1u − Hbm−1
uimlkimu − Hbm

ui1l, s8d

where the HamiltonianH is decomposed in a set of bond
operators,H=obHb, and complete setsuikl, k=1,… ,n have
been inserted. In the first step, a diagonal update is per-
formed in which the expansion orderm can change. The
second, off-diagonal update mimics the idea of loop-type[4]
and worm[22] updates and can best be explained using a
graphical interpretation. Every matrix element in Eq.(8) is
called a vertex, at which the two sites of the interaction and
an imaginary time are assigned. Every vertex has four legs:
two incoming and two outgoing legs per site, corresponding
to the particles created and annihilated byHb. The legs of the
vertices are connected by segments corresponding to the oc-
cupied sites. A worm is created in a arbitrary point in space-
time by inserting a creation and annihilation operator on a
segment. One of these operators is chosen to be the worm
head and is mobile, while the other one is the worm tail and
remains immobile. The worm head moves through configu-
ration space and can change the type of the vertices, for
instance from a diagonal to an off-diagonal vertex. The
worm movement stops when the worm head bites into its

own tail. The entire movement of the worm can then be
regarded as a single loop update.

Once the worm has been created, its movement is com-
pletely determined by how it passes through and modifies the
vertices. Suppose the worm head reaches a vertex at the leg
left under(entrance leg), as in Fig. 2. The local configuration
can then change according to the four processes bounce,
straight, jump, and turn, each with their proper weightWi,
i =1,… ,n. For models with number conservation, it is pos-
sible that one or more of the four processes cannot occur, so
n can in principle be two, three, or four. The bounce process
is always possible but since it does not change the current
vertex, it can be regarded as a waste of computer time. The
worm head has to choose between one of then processes,
modifies hereby the current vertex and goes consequently to
the next vertex along the segment that connects the current
exit leg and the next entrance leg. The probability matrixTij
defines the transition from the entrance leg to the exit legs
and hence completely determines the worm movement. We
will now discuss several choices for this probability matrix
Tij .

Originally, the heat-bath updates[8], Tij =wi /o jwj (solu-
tion A) were proposed. Secondly, other choices are perfectly
possible: Syljuåsen and Sandvik proposedirected loops[6],
where the worm head has a preferred direction at the vertices
in order to be more efficient than solution A. The rule of
thumb is that the frequency of the bounce processes should
be as low as possible. This inspired the authors of Ref.[23]
to numerically minimize the trace of the probability matrix
Tij with respect to detailed balance,WiTij =WjTji (hereafter
called solution B or the minimal bounce solution). They used
a linear programming technique[24] for this purpose.
Equivalently, one can say that this amounts to minimizing
the sum of the eigenvalues of the transition matrixTij ,
minsl2+l3+l4d. Thirdly, we propose to use the locally op-
timal probability matrix Eq.(7) as transition matrix(solution
C) for the scattering of the worm at a vertex.

Spin 3/2XY model. In Ref. [23] the directed loop algo-
rithm was studied for the one dimensional spin 3/2XY model
in an external magnetic fieldh,

H = Jo
ki,jl

1

2
sSi

+Sj
− + Si

−Sj
+d − ho

i

Si
z, s9d

where the first sum extends over nearest neighbors andJ is
an exchange interaction term. It appeared that solution B

FIG. 1. The decorrelation factor for the energy as a function of
temperatureb at constant interaction strength for theq=4 Potts
model on aL=434 matrix is shown for heat-bath updates and for
the locally optimal ones. Simulations consisted of 4000 chains of
one million steps each.

FIG. 2. The four possible states that can arise when the worm
enters the left-most vertex at the leg left under in a number occu-
pation basis(can also be a spin state) and for a system with particle
number conservation. A single line means that the leg is singly
occupied, a double line means double occupancy, and a dashed line
denotes that the leg is not occupied. The four processes on the right
correspond to bounce, straight, jump, and turn, from left to right.
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always gave shorter autocorrelation times than solution A, as
can also be seen in Fig. 3 and in Fig. 4, where the integrated
autocorrelation times for the uniform magnetization and the
energy are plotted.

The authors of Ref.[23] also proposed to break detailed
balance tof iWiTij = f jWjTji , with f i an extra degree of free-
dom at legi. Using a linear programming[24] technique they
were able to further minimize the trace of the probability
matrix. They found that this algorithm gave the shortest au-
tocorrelation times for most values of the magnetic field,
except aroundh<0.8 where it behaved worse than solution
B and, unexpectedly, even worse than solution A. They de-
duced that alternative principles than minimizing bounces
might exist. Furthermore, this algorithm needs to be used
carefully, since it modifies condition(ii ) with respect to the
invariant distribution for the Green’s function[25]
kai

†s0dajstdl, although it is correctly weighted with respect to
the invariant distribution for diagonal observables such as

the energy and the magnetization. Note that is also possible
to apply Eq.(7) to the modified weightsWi8= f iWi in order to
obtain the locally optimal algorithm in case one is not inter-
ested in the Green’s function. Therefore we will not further
compare this proposal with solutions A, B, and C.

We also addressed the spin 3/2XY model with solution C
and the results for the integrated autocorrelation times for the
magnetization and the energy are also presented in Fig. 3 and
in Fig. 4. We find a substantial improvement over solution A.
Solution C is also much better than solution B for magnetic
fields aroundh<0.8, while for other magnetic fields the dif-
ference is smaller. This indeed shows that minimizing
bounces is not optimal for the spin 3/2XY model. Note that
increasing the system size does not significantly change the
ratio of the correlation times of solutions B and C.

Bose-Hubbard model. We also present results for the
Bose-Hubbard model[26] in one dimension(units are as in
Ref. [27]),

H = − to
ki,jl

bi
†bj +

1

2
Uo

i

nisni − 1d − o
i

mni . s10d

The first term represents hopping with strengtht of the
bosons between nearest neighbors, the chemical potential is
denoted bym, and the second term takes on-site repulsion
with strengthU into account. In the Bose-Hubbard model,
the diagonal weights are relatively much larger compared to
the nondiagonal weights than in spin systems. Again, as can
be seen in Fig. 5, the heat-bath updates(solution A) are out-
performed, but for large on-site repulsionU the minimal
bounce solution(solution B) is superior to the locally opti-
mal solution(solution C).

As in the Potts model, we are guaranteed that solution C
is more efficient than solution A, but the Peskun theorem
does not claim that solution C is superior to solution B, be-
cause choosing the lowest(local) l2 will not necessarily cor-

FIG. 3. Integrated autocorrelation times for the magnetization,
tintsMd, as a function of magnetic fieldh for a spin 3/2XY model as
in Ref. [23], lattice sizeL=64, inverse temperatureb=64. The in-
tegrated autocorrelation times are made loop size independent(nor-
malized to two worms per update) so that the heat bath(solution A),
minimal bounce(solution B), and locally optimal(solution C) al-
gorithms can directly be compared. The precise definition of these
algorithms is explained in the text.

FIG. 4. Analogous to Fig. 3 but now for the integrated autocor-
relation time of the energy,tintsEd as a function of the magnetic
field h.

FIG. 5. Integrated autocorrelation time for the densitytintsnd as
a function of on-site repulsionU for a one dimensional Bose-
Hubbard model withm=5, t=1, lattice sizeL=64, and inverse tem-
peratureb=L. Four loops were constructed in every update for the
“min. bounce(B)” and “locally optimal (C)” algorithms, while for
“heat bath(A)” we constructed 16 loops and multiplied the results
by 4 afterwards. Particle number cutoff is lowered atU=3 andU
=8. The Mott phase sets in forU.9.
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respond to the lowest integrated autocorrelation time,tint
[Eq. (1)]. Specifically, in casen=2 both solutions reduce to
Metropolis updating Eq.(5). In casen=3 solution B is of the
form

Tij
B =3

0 a 1 − a

p1

p2
a 0 1 −

p1

p2
a

p1

p3
s1 − ad

p2

p3
−

p1

p3
a

2p3 − 1 + 2p1a

p3

4 . s11d

The linear programming technique[24] applied in solution B
will try to makea=s1−2p3/2p1d if p3,

1
2, otherwise it will

take a=0. It will be the system parameters that determine
whetherTB or TC [Eq. (7) for n=3] performs better. Due to
its structure it is also not possible to improveTB by
Metropolizing it.

Also in casen=4 both solutions B and C put all diagonal
elements in the(local) stochastic matrix zero, except for the
diagonal element corresponding to the largest weight. We
know from the Peskun theorem that this leads to an efficient
sampling. As a counterexample, the Metropolized Gibbs
sampler Eq.(6) has only one zero on the diagonal of the
transition matrix and is systematically outperformed by both
solution B and C.

The class of locally optimal stochastic matrices can be
parametrized as

Tij = 3
0 a b x

p1

p2
a 0 c y

p1

p3
b

p2

p3
c 0 z

p1

p4
x

p2

p4
y

p2

p4
z 1 −

p1x + p2y + p3z

p4

4 , s12d

with x=1−a−b, y=1−sp1/p2da−c, z=1−sp1/p3db
−sp2/p2dc, and the three free parametersa, b, andc. Solu-
tion B will now try to minimizeT44, or minimizea, b, andc,
under a number of constraints such asa+bø1. This can be
suboptimal, however, since the minimum will be found when

one or more of the constraints are exactly met[24]. Suppose
the minimum is found fora+b=1, as it happens in the spin
3/2XY model for magnetic fieldsh<0.8. Then the scattering
from the least probable state to the most probable state is
zero, and this clearly cannot be optimal and explains why
solution C is better in Fig. 3.

The overall conclusion is that the integrated autocorrela-
tion times for both solutions B and C will be of the same
order and roughly optimal. The important principle is that the
diagonal elements corresponding to the lowestn−1 weights
should be zero. Some arbitrariness is still retained, but it
does not seem possible to define how the remaining freedom
should be chosen independently of the weights that occur in
the updating process. When the diagonal and nondiagonal
weights are of the same order, solution C is better, while for
large diagonal weights solution B gives the lowest integrated
autocorrelation times. Furthermore, we have a good argu-
ment why these solutions lead to a locally optimal sampling,
based on the Peskun theorem.

Conclusion. We have shown that the optimal transition
kernel for Markov chain Monte Carlo should have a zero
diagonal, except for the diagonal element corresponding to
the largest weight(which can be large). We have presented
results for the Potts model with random single spin updates
and for quantum spin chains and the Bose-Hubbard model
with the directed loop algorithms. They confirm the theoret-
ical reasoning. Our results suggest a practical way to im-
prove existing Monte Carlo methods. This could lead to sig-
nificant gains in efficiency in both classical and quantum
Monte Carlo. One could consider applications in the research
fields of flat histogram methods[28], the loop algorithm
[4,5], the worm algorithm[22], and the fast updates in aux-
iliary field quantum Monte Carlo[29,30] and shell model
Monte Carlo [31]. Furthermore, our results could shed
an interesting light on the correlations in Glauber
dynamics[32].
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