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Optimal Monte Carlo updating
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Based on Peskun’s theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should
have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will
compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the
Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics.
As an application in quantum physics we consider the spirX¥/@odel and the Bose-Hubbard model which
have been simulated by the directed loop algorithm in the stochastic series expansion framework.
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Monte Carlo methods are nowadays used in almost every The Markov process correlates the measurements of the
branch of science, offering exact results in a statistical sensgbservable€) in consecutive steps. The variarnté on these
or providing answers where other methods fail. Already incorrelated measurements is not equal to the vari
statistical physics alone, Monte Carlo methods have beepptained from uncorrelated measurements. Instead,
applied to a variety of modell]. For many applications, =27 ;07 ., in which we have introduced the integrated au-
good algorithms have been devised and there exist now S@gcorrelation time[5,11]
lutions to many problems that were initially untractable. A
well known example is the critical slowing down in the 1 - ®
neighborhood of critical points that has been overcome in TintQ = 5 +ZAQ(X ). (1)
both classical(by cluster algorithmg[2,3]) and quantum =
Monte Carlo(by the loop algorithm$4]). The need for better  Stationary samples® at the Monte Carlo times are ob-
performing algorithms is clear: efficient algorithms lead totained from the sampler while the normalized autocorrelation
more accurate results at the same computational cost. Y&inction AQ(x(t)) for the observabl®) is given by
little that goes beyond common sense reasoning is known i) i (w2
about why an algorithm is efficient or not, and within a cho- Ag(xV) = QX")Q(X)) = (Q(x)) @)
sen algorithm there is often additional freedom. (Q2(xX)) = (Q(x))2

We address the question of the efficiency of Markov chain . . )
Monte Carlo(MCMC) algorithms in terms of smaller error N Which the ensemble average-) is taken overi. We can
bars. We first touch upon the needed terminology as it | ow make a connection with the second largest eigenvalue
usually[5] understood in statistical physics from a practitio-
ner’s viewpoint. We show how optimal sampling enters into 14N\,
this discussion and comment on its implementation. Finally, SUPTing, = Lo
we compare it with standard updating mechanisms for the Q (1-2y)

Potts model and for the directed loop algoritfify7] in the  The following discussion focuses on the eigenvalNgshs,

stochastic series expansifsi. o ... to obtain a lower asymptotic variance for an observable
In MCMC a transition kerne{matrix) T is set up and we Q,

will assume that we know the discrete weightg, ..., W,

3

(finite, computable sgtof the invariant probability distribu- 1 " .

tion W. If the following two conditions hold: v(QT) = lim — var 2 Q) |. (4)
(i) normalization of probabilityX;T;=1, Oi; " k=1
(i) reversibility (detailed balange Wi T;; =W,Tj;, A different question concerns the convergerid€] of a

and the chain can connect any two states in a certain finitgrobability distribution towards the invariant probability dis-
number of steps, then the Markov chain will converge to theribution. It is dominated by the second largest eigenvalue in
invariant probability distributiogwhich will be W). The sto-  apsolute value of the stochastic matrix, which can be differ-
chastic matrixT has as largest eigenvalue 1, while the otherent from\, for nonpositive operators, and would determine
eigenvalues are sorted by <I\;<1, j=2,...n. Strictly  the required number of thermalization or burn-in steps. Note
speaking, conditior(ii) is a too strong[9,10 condition to  that nonreversible transition kernels can converge fas&ir
assure convergence of the Markov chain towards the invari- The stochastic matrix has the dimension of the Hilbert
ant distributionW, it suffices=;WT;; ~ W, but the reversibil-  space, and all algorithms consist of two different operations
ity condition is widely used in practical applications. in every Monte Carlo step: a limitation on the configurations
that can be reached and secondly the acceptance or the re-
jection of the transition to one of them. For instance, heat-
*Electronic address: Lode.Pollet@UGent.be bath updating(also called the Gibbs sampl¢t4]) in the
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Ising model with dimensioh X L can in one step reach only W, W, W,

L2+1 different configurations from the current configuration 0 W_Y1 W, Y1 .- W, Y1
. . 2 . . 1 1 1

which has weightV,;. Among thelL“ new ones, it picks one

at random and the transition to this trial configuration with y, 0 W3y2 Wny
weight W, will be accepted according %/,/ (W; +W,), oth- W, W, 2

S L : . TOPt = (7)
erwise it remains in the current configuration. Note that all U W, '

eigenvalues of the Gibbs sampler are posifii/g]. Yi Y2 o .. W V3
We will now focus on this second step of the update. For
the Ising model, there are only two different configurations : . :
that play a role. How should we choose the transition matrix Vi Yo Y3 ... 1l-y;—yo—..
so that the asymptotic variance is smallest? A hint is given by - -
the Peskun theoreifi6], stating that ifT” and T® both sat-  with y;=m/(1-m), Y,=(1-y)m/(1-m—m)),.... The
isfy conditions(i) and(ii) and if all off-diagonal elements of eigenvalues are given by 1,=-y,; [the same as in E¢6)],
TB are larger or equal than the corresponding elementéof \3=-Y,,... . They are all negative and appear in an ordered
then T will lead to a smaller asymptotic variance for all way. This\, has the lowest value that possibly can be ob-
observables thai®, or equivalently)\’;>)\§‘. It then follows  tained with respect to the probability distributioft, and
that the Metropolis-Hastings algorithfd7] is by construc-  with N\, determined\; is then the smallest possible third
tion the most effective sampler for the Ising model with ran-largest eigenvalue, etc. Note that a rescaling is at work here,
dom single site updatgand not the Gibbs samplei~or all  the entries for the second roW;, j=2,...,n are analogous
possible stochastic matrices with dimension2 the Me-  to the first row apart from the rescaling-1(1-y;). Equation
tropolis transition matri18] is given by (7) represents an optimal transition matrix over the entire
Hilbert space, however, many situations of practical interest

Vet 0 1 need to sample stochastic subprocesses. Within these, opti-
T =W, W (5  mal sampling can only be achieved when all but one of the
W, W, diagonal elements are zero. When K@) is applied to a

) ] ) stochastic subprocess, we will call it the locally optimal al-
Here we have ordered the weights in ascending order. Thiggyithm.

nonstandard way of writing Metropolis updating shows how-" pgits modelAs a first application, we consider tius=4
ever the key ingredients of its efficiency, namely that thepotts mode[1] in two dimensions. We are interested in the
chance of staying in the current configuration should b&jynamics of the Monte Carlo process. Therefore we consider
m|n|m|ﬁ§td and secondly that the second largest eigenvalue i$ small |attice with single-spin updates only, and we do not
A=—Tor =-Wi/W,. _ _ want to use cluster updat¢®,3] here. So we will randomly
Peskun’s theorem implies an ordering of the weights. SGelect a spin, after which we have to make a choice between
let (for the remaining of the papeim, < m,<---<m, be the  the four possible orientations that this spin can take. Al-
normalized weights in ascending order,=Wi/2;W,. Pes-  though the random selection of a site and the single spin
kun’s theorem tells us that we can always improve a transiypdate both seriously violate the structure of the optimal
tion matrix T by “Metropolizing” it, T =T; /2Ty, Uj#i.  stochastic matrix Eq(7), the Peskun theorem still holds,
Applying this idea to heat-bath updates, the followingmeaning that the matrix Eq7) (applied to the stochastic
Metropolized Gibbs sampl&MG) is obtained: subprocessstill leads to a more effective sampling than

772 s 7Tn heat-bath updatingT”-:VVJ-/Eka:wJ-,_IZIi ,]. This of course
0 1 1= S cannot cure the fact that the updating of a single spin still
M m M leads to the divergence of the autocorrelation time when the
Mg T3 Tn temperature reaches its critical valgg
1-m T 1l-m, T 1-m, The decorrelation factof21] of/o5, is defined as the
Ti'}"G= ™ T @, |, (6  ratio between the error bars obtained from a Monte Carlo
1om 1-m 1-.. .. 1 simulation with correlations between successive samples and
o 2 s the error bars one would obtain from the same number of
independent but identically distributed samples. In the limit
ry Ty 3 of a large number of samples, the decorrelation factor be-
1-m l-m l-m = 1-.. comes equal to twice the integrated autocorrelation fifte

- (1)]. The decorrelation factor can accurately be estimated by
or Ti’\j"G:min(qrj/(l—wi),(w,—/l—qrj)). Liu [19] has applied running a large number of independent Markov chains. In
this idea to the independence Gibbs sampler, and obtainedFdg. 1 we see that the decorrelation factor is much smaller for
complete eigenanalysis for the resulting stochastic matrix. the locally optimal algorithm than for the heat-bath algo-
It is possible to repeat this Metropolizing procedure until rithm.
all but one of the diagonal elements are zero. So, optimal A small lattice of L=4X4 has been chosen since the
transition matrices must havig =0, i # n. Indeed, Frigesst  decorrelation factor scales with system size for single-site
al. [20] have shown that the optimal transition matrix is of updates such that the difference between the two algorithms

the form will be larger in absolute terms when using a small lattice.
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% FIG. 2. The four possible states that can arise when the worm
enters the left-most vertex at the leg left under in a number occu-
pation basigcan also be a spin statand for a system with particle
number conservation. A single line means that the leg is singly
occupied, a double line means double occupancy, and a dashed line
) ) ) denotes that the leg is not occupied. The four processes on the right
0 05 1 15 2 correspond to bounce, straight, jump, and turn, from left to right.
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) ) own tail. The entire movement of the worm can then be
FIG. 1. The decorrelation factor for the energy as a function Ofregarded as a single loop update.
temperatureB at constapt .interaction strength for tlge=4 Potts Once the worm has been created, its movement is com-
model on al.=4> 4 matrix is shown for heat-bath updates and for o0 getermined by how it passes through and modifies the
the Ioc_a_lly optimal ones. Simulations consisted of 4000 chains o ertices. Suppose the worm head reaches a vertex at the leg
one million steps each. left under(entrance leg as in Fig. 2. The local configuration
can then change according to the four processes bounce,
We clearly see a significant difference between the Iocall)gtraight, jump, and turn, each with their proper weiytt
optimal and the heat-bath transition probabilities. Thej=1 . n. For models with number conservation, it is pos-
Metropolized Gibbs sampleF™® [Eq. (6)] has the sam@,  sjple that one or more of the four processes cannot occur, so
as the optimal on¢Eq. (7)], and the integrated autocorrela- n can in principle be two, three, or four. The bounce process
tion times differ only slightly for the % 4 Potts model. Note s always possible but since it does not change the current
that it is much easier to implemefit'® thanTOP, and if in  yertex, it can be regarded as a waste of computer time. The
practice the stochastic matrices cannot be computed in agyorm head has to choose between one of riyarocesses,
vance and need to be recomputed at each step, it is recorpodifies hereby the current vertex and goes consequently to
mended to usa"e. . _ the next vertex along the segment that connects the current
Directed loops The same reasoning also applies to quanexit leg and the next entrance leg. The probability malfjx
tum Monte Carlo. In the stochastic series expansion methogefines the transition from the entrance leg to the exit legs
[8] a Taylor expansion is applied to the partition function  and hence completely determines the worm movement. We
=Trexp(-pH), yielding will now discuss several choices for this probability matrix
JOriginaIIy, the heat-bath updat¢8], T;;=w;/Z;w; (solu-
tion A) were proposed. Secondly, other choices are perfectly
. Lo . possible: Syljudsen and Sandvik propasected loopg6],
Xim-a| = Ho, _ [im)im| = Hp_[i2), (8)  where the worm head has a preferred direction at the vertices
in order to be more efficient than solution A. The rule of
thumb is that the frequency of the bounce processes should
'tge as low as possible. This inspired the authors of R
to numerically minimize the trace of the probability matrix
Tjj with respect to detailed balanc/T;;=W;T; (hereafter
galled solution B or the minimal bounce solutjoithey used
a linear programming techniqu@24] for this purpose.
quivalently, one can say that this amounts to minimizing
he sum of the eigenvalues of the transition matffiy,
nin(A\,+Az+\,). Thirdly, we propose to use the locally op-
imal probability matrix Eq(7) as transition matrixsolution
o) for the scattering of the worm at a vertex.

- BT . o .
z=2 — 2 2 (g = Hy i) = Hy iz
m=0 M iy i {by,.....og

where the HamiltoniarH is decomposed in a set of bond
operatorsH=3H,, and complete set), k=1,...,n have
been inserted. In the first step, a diagonal update is pe
formed in which the expansion orden can change. The
second, off-diagonal update mimics the idea of loop-ti4je
and worm[22] updates and can best be explained using
graphical interpretation. Every matrix element in E8) is
called a vertex, at which the two sites of the interaction an
an imaginary time are assigned. Every vertex has four leg
two incoming and two outgoing legs per site, correspondin
to the particles created and annihilatedHyy The legs of the

vertices are connected by segments corresponding to the . .
cupied sites. A worm is created in a arbitrary point in space- Spin3/2XY model In Ref. [23] the directed loop algo-

time by inserting a creation and annihilation operator on e{'thm was studied for the one dimensional spin 2¥2model

segment. One of these operators is chosen to be the worffy &N external magnetic field,

head and is mobile, while the other one is the worm tail and 1 .

remains immobile. The worm head moves through configu- H :JE 5(3 S+S9)- hE s, ©)
ration space and can change the type of the vertices, for W '

instance from a diagonal to an off-diagonal vertex. Thewhere the first sum extends over nearest neighborslasd
worm movement stops when the worm head bites into itsan exchange interaction term. It appeared that solution B
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FIG. 3. Integrated autocorrelation times for the magnetization, FIG. 5. Integrated autocorrelation time for the densijty(n) as
(M), as a function of magnetic fiekifor a spin 3/XY model as  a function of on-site repulsiotJ for a one dimensional Bose-
in Ref. [23], lattice sizeL=64, inverse temperatur@=64. The in-  Hubbard model withk=5,t=1, lattice sized_=64, and inverse tem-
tegrated autocorrelation times are made loop size indepefm@nt  peratureB=L. Four loops were constructed in every update for the

malized to two worms per updatso that the heat batlsolution A), “min. bounce(B)” and “locally optimal(C)” algorithms, while for
minimal bounce(solution B), and locally optimal(solution § al- “heat bath(A)” we constructed 16 loops and multiplied the results
gorithms can directly be compared. The precise definition of thesby 4 afterwards. Particle number cutoff is loweredust3 andU
algorithms is explained in the text. =8. The Mott phase sets in fdt>9.

always gave short_er a_utocorreletior_l times than solu_tion A, dthe energy and the magnetization. Note that is also possible
can also be seenin Fig. 3 and in Fig. 4, Where the mtegrateR) apply Eq.(7) to the modified weightsV! =f,W, in order to
autocorrelation times for the uniform magnetization and theobtain the locally optimal algorithm in case one is not inter-

energy are plotted. ested in the Green’s function. Therefore we will not further
The authors of Ref[23] also proposed to break detailed compare this proposal with selutions A B. and C.

(tj)alancel tqfi\l{JV‘TiJ':fiY.ViTii' with f; an .eXtT degr]]re_e of fr:ee- We also addressed the spin ¥2model with solution C

om at belg. sfmgha inear pr_ograr:nmmlgz ]t?chnlqueg ?)yl and the results for the integrated autocorrelation times for the
were able to further minimize the trace of the probability .\, netization and the energy are also presented in Fig. 3 and
matrix. They found that this algorithm gave the shortest au;, g 4 \we find a substantial improvement over solution A.

tocorrelation times for mosF values of the magnetic fiSEId'Sqution C is also much better than solution B for magnetic
except around~0.8 where it behaved worse than solution fields arounch= 0.8, while for other magnetic fields the dif-

B and, unexpectedly, even worse than sqlghen_ A. They deference is smaller. This indeed shows that minimizing
duced that alternative principles than minimizing bounce ounces is not optimal for the spin 3(¥ model. Note that

mlghft ”exust.. Fur.therrg%re, thlsde[gquthmhneeds to behuse creasing the system size does not significantly change the
carefully, since it modifies conditio(i) with respect 1o the i of the correlation times of solutions B and C.

in¥ariant dislt;ibutiﬁn _for thel Greerr:’sd fu_nr(]:tion[ZQ Bose-Hubbard modelWe also present results for the
(&/(0)3;(1), although it is correctly weighted with respect to gse_Hybhard moddR6] in one dimensior{units are as in

the invariant distribution for diagonal observables such agef. [27)),

45

T i " _heat bath (A) »—H __ t 1 -1) -
i S B} H=-t2 bl + U2 N -1 -2 pn. (10

(Bl
3¢
The first term represents hopping with strengttof the
bosons between nearest neighbors, the chemical potential is
denoted byu, and the second term takes on-site repulsion
with strengthU into account. In the Bose-Hubbard model,
the diagonal weights are relatively much larger compared to
the nondiagonal weights than in spin systems. Again, as can
be seen in Fig. 5, the heat-bath updatsdution A) are out-
performed, but for large on-site repulsidh the minimal
0 . . . : : bounce solution(solution B) is superior to the locally opti-
0.4 06 08 1 12 mal solution(solution Q.
As in the Potts model, we are guaranteed that solution C

FIG. 4. Analogous to Fig. 3 but now for the integrated autocor-is more efficient than solution A, but the Peskun theorem
relation time of the energys(E) as a function of the magnetic does not claim that solution C is superior to solution B, be-
field h. cause choosing the loweagbcal) \, will not necessarily cor-
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Tit(E)

20 |
15 4§
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one or more of the constraints are exactly fi#2f]. Suppose
the minimum is found foa+b=1, as it happens in the spin
3/2XY model for magnetic fielda = 0.8. Then the scattering

respond to the lowest integrated autocorrelation timg,
[Eq. (1)]. Specifically, in case=2 both solutions reduce to
Metropolis updating Eq5). In casen=3 solution B is of the

form from the least probable state to the most probable state is
B . zero, and this clearly cannot be optimal and explains why
0 a l1-a solution C is better in Fig. 3.
™ ™ The overall conclusion is that the integrated autocorrela-
s 2 0 1-—a (17 tion times for both solutions B and C will be of the same
& 2 2 ' order and roughly optimal. The important principle is that the
ﬂ(l ~a) T ﬂa 2m3—1+2ma diagonal elements corresponding to the lowest. weights
T3 T3 T3 T3 should be zero. Some arbitrariness is still retained, but it

does not seem possible to define how the remaining freedom
. . 7 L should be chosen independently of the weights that occur in
will try to makea=(1-2ms/2m,) if m3<3, otherwise itwill o ndating process. When the diagonal and nondiagonal
take a:O.BIt W'l(lj be the system parameters that determineeights are of the same order, solution C is better, while for
whetherT® or T~ [Eq. (7) for n=3] performs better. Due 10 |5rge diagonal weights solution B gives the lowest integrated
its structure it is also not possible to improvls by  gytocorrelation times. Furthermore, we have a good argu-

Metropolizing it. , , ment why these solutions lead to a locally optimal sampling,
Also in casen=4 both solutions B and C put all diagonal 5564 on the Peskun theorem.

elements in theglocal) stochastic matrix zero, except for the  ~gonclusion We have shown that the optimal transition
diagonal element corresponding to the largest weight. Wgerne| for Markov chain Monte Carlo should have a zero
know from the Peskun theorem that this leads to an efficiengjagonal, except for the diagonal element corresponding to
sampling. As a counterexample, the Metrc_>pol|zed Gibbshe largest weightwhich can be large We have presented
sampler Eq.(6) has only one zero on the diagonal of the yaqits for the Potts model with random single spin updates
transition matrix and is systematically outperformed by both, 4 for quantum spin chains and the Bose-Hubbard model
solution B and C. _ _ _ with the directed loop algorithms. They confirm the theoret-
The class of locally optimal stochastic matrices can bggy reasoning. Our results suggest a practical way to im-
parametrlz?d as prove existing Monte Carlo methods. This could lead to sig-

The linear programming techniqyi24] applied in solution B

0 a b X 1 nificant gains in efficiency in both classical and quantum
Monte Carlo. One could consider applications in the research
ﬂa 0 C y fields of flat histogram methodf28], the loop algorithm
P [4,5], the worm algorithm[22], and the fast updates in aux-
Ti=|m, m , (12  lliary field quantum Monte Carld29,30 and shell model
;b ;C 0 z Monte Carlo [31]. Furthermore, our results could shed
3 3 an interesting light on the correlations in Glauber
. ﬂy M2, q_ mX+ Y + meZ dynamics[32].
L T4 T4 T 4 - The authors wish to thank the Research Board of the Uni-
with  x=1-a-b, y=1-(m/m)a-c, z=1-(m/m3)b  versiteit Gent, the Fund for Scientific Research, Flanders,

—(ar,/ m)c, and the three free parametexsh, andc. Solu- and NATO Grant PST-CLG 980420 for financial support.
tion B will now try to minimizeT,,4, or minimizea, b, andc, = The authors acknowledge G. Barkema, H. Blote, A. van
under a number of constraints suchaasb=<1. This can be Heukelum, P. J. H. Denteneer, J. Carlson, K. Langanke, and

suboptimal, however, since the minimum will be found whenJ. Ryckebusch for valuable discussions.
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